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Abstract
We establish the viability of a streamlined architecture

for pedagogically appropriate computer assisted pronunciation
training (CAPT), to give second language learners automatic
feedback about their mispronunciations. This takes advantage
of end-to-end speech recognition models to detect mispronunci-
ation in audio segments that correspond directly to orthographic
letters, in contrast to standard mispronunciation detection using
phone representations. Results in a classification task show the
potential for similar sensitivity to non-nativelike phonetic errors
in grapheme-aligned segments as in phone-aligned segments.
Advantages of this approach over phone-based pronunciation
scoring can include providing naturally comprehensible (ortho-
graphic, not phonemic) feedback to learners, being inherently
open-vocabulary in the target language, and evaluating pronun-
ciations with reference to a full range of target-language acous-
tic variants rather than a prespecified canonical phone sequence.
Index Terms: computer assisted pronunciation training, com-
prehensible feedback, forced alignment, phone segmentation,
pronunciation error detection

1. Introduction
Computer assisted pronunciation training (CAPT) enables
learners of a second language (L2) to become more fluent, com-
prehensible, and comfortable speaking, through self-study with
automated pronunciation assessment [1]. Fine grained feedback
on individual speech segments is particularly effective to di-
rect learners’ awareness and effort where it will be productive,
in keeping with the Noticing Hypothesis [2] established in L2
pedagogy for corrective feedback in CAPT systems [3]. How-
ever, sub-word mispronunciation scoring is traditionally based
on phones, as in hidden Markov model (HMM) speech recog-
nisers [4], with drawbacks from the perspective of either the
average learner or the CAPT designer who must transform the
phone scores into more intelligible feedback [5].

We propose a streamlined architecture repurposing end-to-
end automatic speech recognition (E2E ASR) to extract pronun-
ciation information corresponding to orthographic letters. This
is directly interpretable by literate learners [3, 5], and reduces
needs for language-specific resources like pronunciation dictio-
naries. Evaluations in Norwegian and Icelandic establish feasi-
bility of detecting non-nativelike pronunciations at similar sen-
sitivity in both letter-based segments and phone segments, with
either automatic or gold (human-annotated) phone alignments.

1.1. Related work

Two major challenges in sub-word pronunciation scoring are to
achieve accurate scores for such short speech segments, and to
deliver feedback that learners can understand and improve from.

1.1.1. Mispronunciation detection

Even word-level CAPT scoring has low accuracy. Summaris-
ing literature on L2 English speakers, Korzekwa et al. [1] find
performance of ‘60% precision at 40%–80% recall’, while their
proposal to synthesise additional training speech improves area
under the precision/recall curve (AUPR) to at most 0.75 for the
task of classifying in/correctly pronounced L2 English words.

Phone-level error detection accuracy is even lower. Good-
ness of Pronunciation (GoP) exemplifies classical methods, seg-
menting a spoken word into its expected phone sequence with
forced alignment before evaluating similarity of each phone to
canonical acoustic models [4]. With further development to
refine acoustic modelling [6, 7], representative best results in-
clude F1 score of 0.61 for L2 phone error detection in a system
requiring relatively modest few hours of expensively labelled
training data for fine tuning [8]. Recent methods include ded-
icated end-to-end pipelines, for example detecting whether a
phone sequence decoded from a speech sample matches the se-
quence given in a pronunciation dictionary [9, 10, 11]. These
approaches require increasing amounts of annotated training
data, or those specifically aiming to reduce this problem strug-
gle to match a traditional GoP baseline [10, 12, 13, 14, 15]. Al-
ternatively, in previous work we applied dynamic time warping
(DTW) to detect non-nativelike pronunciations using only un-
annotated parallel speech [16], finding area under the receiver
operating characteristic curve (AUROC) of 0.88 for the proxy
task of classifying phone segments as having been actually pro-
duced by a native (L1) or L2 Norwegian speaker.

1.1.2. Usable mispronunciation information

The sub-word mispronunciation detection methods reviewed
above implement pronunciation scoring of phone segments,1 ei-
ther by forced alignment of the CAPT user’s speech to a phone
sequence from a pronunciation dictionary, or by directly decod-
ing the speech to its best hypothesised phone sequence.

However, the resulting phone-level pronunciation error
feedback is not intelligible to most L2 CAPT users, without spe-
cialist training in linguistics [5, 17]. Studies of CAPT pedagogy
and learner outcomes indicate that it is often more effective to
instead simply highlight (with underline, bold, and/or colour)
the letter(s) that intuitively seem to correspond to the sound in
which a mispronunciation is detected [2, 5, 3, 18].

From the technical implementation perspective, provid-
ing such readable feedback for learners therefore relies on
grapheme-to-phoneme (g2p/p2g) conversion, which needs
language-specific training data and/or handmade rules, and can

1Various scoring procedures are best described in terms of phonetic
segments, phonemes, or neither exactly, so we refer generally to phones.



be prone to disruptive levels of error in languages without suf-
ficient resources [3, 19, 20]. Even having reliable p2g in-
put/output at word level does not necessarily imply access to
phone-to-letter alignments sufficient to identify the ‘mispro-
nounced letters’ when a phone pronunciation error is detected.
For example, in action [æ k S @ n], learners may benefit from at-
tention on ‘ac tion’ or ‘act ion’ when mispronouncing the third
or fourth phones respectively. Learners who mispronounce Ice-
landic fljúga [f l j u: a] should receive different feedback for
mispronouncing [u:] as [y:] ‘fljúga’ than for inserting a conso-
nant corresponding to the silent letter <g> ‘fljúga’.

Solutions for some cases include: providing training for
learners to interpret phone-based feedback; pre-specifying p2g
alignments for a closed vocabulary; interpolating approximate
alignments from the length of a word’s phone sequence and let-
ter sequence; applying alignment heuristics/constraints such as
awareness of vowels and consonants; and accommodating for a
limited set of anticipated errors (e.g. [f l j u: g a]) in an extended
recognition network [3, 9, 17, 21, 22, 23, 24].

1.2. Approach and Contributions

All solutions for phone-based CAPT in §1.1.2 have drawbacks;
E2E ASR models, like Wav2vec-2.0, could bypass the problem
instead. Connectionist temporal classification (CTC) decoding
labels frames of audio with characters from the model’s output
vocabulary, i.e. letters from a language’s normal orthography.
In this way, the pronunciation of the segment of audio aligned
to each letter can be directly evaluated, and the evaluation natu-
rally understood by language learners. While a similar effect
may theoretically be derived in shallower ASR architectures
using character-based/subword lexicons or byte pair encoding,
Wav2vec2 brings a major step forward in performance across
many tasks [25]. Many languages can be served by massively
multilingual pretrained models like XLS-R [26]. The only strict
requirement is a CTC decoding model with full coverage of the
target language’s alphabet, although best performance may be
expected with language-specific decoder fine-tuning and this is
necessary in any case for languages with globally unique char-
acters (Icelandic ‘þ’). Regardless, no pronunciation dictionary
or g2p is required at any point, and unlike creation of those re-
sources, CTC decoder finetuning requires only speech paired
with orthographic transcriptions and is then inherently open-
vocabulary; the potential advantages for development are clear.

However, time-aligning characters is an unanticipated use
of E2E ASR models, where timing information for decoder out-
put is normally irrelevant beyond ordering the characters cor-
rectly [27]. In other words, for conventional forced alignments
as in §1.1.2, it is expected that the start and end times found for
each phone are the times at which the speaker started and fin-
ished producing that phone; but CTC decoding carries no such
clear expectation about the content of the speech aligned to a
given letter. Therefore, it is necessary to empirically evaluate
whether CTC segmentation with Wav2vec2 models could be the
basis for intelligible fine-grained mispronunciation feedback.

We adopt the relative DTW approach developed in [16].
This provides an evaluation task applicable to Icelandic, which
we aim to develop CAPT for, and has shown competitive results
while requiring little, albeit specific, in-language data. Most im-
portantly, unlike other methods in §1.1.1, the sub-word segment
labels (phone/letter identities) are irrelevant to scoring; this fea-
ture means that learners are not constrained towards a few pre-
specified dictionary pronunciations when several variants are
actually acceptable, but it also facilitates our present experiment

with a minimal controlled change in the implementation by per-
forming forced alignment to letters instead of phones.

Contributions of this work include repurposing E2E ASR
models for character-level time alignments in place of phone
alignments; evaluating the method of [16] in a realistic rather
than idealised CAPT scenario, i.e. a crowdsourced speech cor-
pus with automatic segment alignments; and facilitating infor-
mative fine-grained learner feedback in open-vocabulary CAPT.

2. Methods
2.1. Corpora

NB Tale2 is a Norwegian corpus of 260 native (first language;
L1) speakers from all dialects, and 117 advanced non-native
(second-language; L2) speakers. Recordings were collected in a
controlled quiet environment from two microphones, and there
are parallel recordings from every speaker for three sentences.
Our experiments use the Sennheiser recordings of these sen-
tences totalling 3.5 hours, following [16].
CAPTinI Icelandic recordings come from the Samrómur [28]
and Samrómur Unverified [29] corpora, crowdsourced read
speech collected from 2019 onwards. Our experiments use
recordings of adult speakers gathered through the CAPTinI sub-
collection3 for Icelandic pronunciation training [30]. To provide
enough parallel data for DTW pronunciation scoring, only sen-
tences with at least 10 recordings each of L1 and L2 Icelandic
speakers are included in the final sample. In all this is 3014
recordings (2023 L1 and 991 L2) of 76 unique sentences, in
total 3 hours, with different assortments of speakers for each
sentence due to the crowdsourced collection.

2.2. Alignments

A recent investigation of word-level forced alignment in
Swedish [31] identifies the best options as the Montreal Forced
Aligner (MFA) [32] and CTC decoding with Wav2vec-2.0 [27];
we are not aware of an equivalent study for sub-word alignment.

Gold word and phone alignments are provided with NB
Tale, as used for pronunciation scoring in [16]. Gold phone
transcriptions are not available for CAPTinI.

MFA is a popular toolkit built on Kaldi using Gaussian mix-
ture model-HMM triphone acoustic models to align speech to
phone sequences from a pronunciation dictionary [32]. In keep-
ing with a common use of MFA, we train acoustic models on the
actual speech data we wish to align, i.e. NB Tale or CAPTinI
datasets, along with corresponding orthographic transcripts and
a pronunciation dictionary of the respective language. Icelandic
alignment uses the General Icelandic Pronunciation Dictionary
for ASR, which usually has one or two pronunciation options
per word [33]. A Norwegian pronunciation dictionary was in-
duced from the gold NB Tale phone transcripts; after removing
stress diacritics, and keeping only pronunciations observed at
least 10 times, most Norwegian words had 3-5 variants.

CTC segmentation with Wav2vec2 ASR models aligns au-
dio with letters according to output label probabilities for each
frame of audio [27]. This was selected for our E2E ASR exper-
iments because Wav2vec2 is well established as a speech rep-
resentation for DTW-based pronunciation tasks [34, 16], fine
tuned models are available for both relevant languages, and the
time resolution of Whisper, a major alternative with competitive
general ASR performance, is considerably looser [35].

2www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-31/
3https://samromur.is/captini



2.3. Speech representations

MFA alignment uses Mel frequency Cepstral coefficients
(MFCCs). To perform CTC alignment, and as speech embed-
dings for DTW score computation regardless of alignment type,
we use the Norwegian model wav2vec2-1b-npsc-nst4 with 48
transformer layers finetuned from XLS-R 1B on the NPSC and
NST datasets, and the Icelandic model wav2vec2-large-xlsr-
53-icelandic-ep10-1000h5 with 24 transformer layers finetuned
from XLSR-53 on 1000 hours of Icelandic speech.

2.4. Pronunciation scoring

Pronunciation scores following [16] derive from the dynamic
time warping path costs for aligning test speech T with two
parallel reference speech sets RefL1 and RefL2, containing re-
spectively native and non-native speech. Equation 1 describes
the basic difference-to-sum ratio pronunciation score, which
represents how distinctly nativelike or non-nativelike T is.

RelDTW (T ) =
Cost(RefL2, T )− Cost(RefL1, T )

Cost(RefL2, T ) + Cost(RefL1, T )
(1)

When T is a whole word, the term Cost(RefL1, T ) is the
average of DTW costs for aligning T with each r ∈ RefL1,
as previously validated to measure foreign accent strength in
English [36, 34]. When T is a segment within a word, the entire
word is input to DTW, but the segment’s pronunciation costs
are extracted from only the portion of the DTW alignment path
corresponding to that segment’s time span within the test word,
as described in [16]. In both cases Cost(RefL2, T ) represents
the same computation with a reference set of L2 rather than L1
speakers; details of the method are described in [16, 34]. In
evaluations on words and subword segments, classification of
test speech is performed according to a threshold for relative
DTW on Equation 1, whose value ranges between -1 and 1.

2.5. Experiment

Experiments classify both native and non-native speech samples
according to a threshold on the DTW-based measure. In the ab-
sence of a labelled corpus of L2 pronunciation errors, classifi-
cation accuracy in this task indicates the measure’s basic ability
to identify L2 mispronunciations that are non-nativelike while
still accepting all real L1 variants as correct.

Relative DTW is run for every Transformer layer of a lan-
guage’s Wav2vec2 model, because phonetic information is of-
ten represented in some intermediate layers [34, 37, 16]. The
classification performance is assessed for words and for sub-
word segments, using each of the the two or three available
alignment types in Icelandic and Norwegian data.

All evaluations use repeated k-fold cross validation, where
k=2 and repeated with 5 random corpus splits; results show av-
erages across these 10 runs. For Norwegian NB Tale, in each
fold 130 L1 speakers are used as RefL1 and 58 or 59 L2 speak-
ers are used as RefL2, while the held-out speakers are classi-
fied by comparison to these. For Icelandic CAPTinI, since each
sentence has a different set of speakers, each cross-validation
fold contains a random half of the L1 speakers per sentence as
RefL1 and half of the L2 speakers per the same sentence as

4Model: https://huggingface.co/NbAiLab/wav2vec2-1b-npsc-nst.
NPSC: www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-
58/. NST: www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-
sbr-54/

5https://huggingface.co/carlosdanielhernandezmena/wav2vec2-
large-xlsr-53-icelandic-ep10-1000h
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Figure 1: Area under ROC curve by Transformer layer (1-24 or
1-48), for each available alignment type. Bars show standard
error in AUROC across 10 runs.

RefL2. The runtime for relative DTW scoring and evaluation
was around 1 hour per Transformer layer, on Intel Xeon Gold
6248R CPU; code and evaluation data are also made available.6

The main evaluation metrics are the area under the receiver
operating characteristic curve (AUROC) and equal error rate
(EER, the false positive rate and false negative rate at the point
where these are equal), aiming to provide an overall picture of
classifier performance and also convey practical usability for
possible learner populations [38].

3. Results and analysis
Figure 1 shows AUROC for words and segments with each
alignment type, across all Transformer layers, while Figure 2
reports the same for EER. Table 1 shows quantitative detail for
selected sub-word segment results, adding several commonly
used measures to facilitate comparison with related literature.

Figure 3 reports the recall for L2 speaker classification
when applying the threshold at which precision for L1 speaker
classification is at least 0.80, or R@0.8P. Unlike the summary
metrics, this gives a snapshot of applied performance reflecting
a domain-specific asymmetry, that flagging correct speech as a
mispronunciation has a worse impact on the learners’ experi-
ence than classification errors in the opposite direction [7].

Firstly, results for words provide necessary context to in-
terpret the phone and letter results, by showing the background
effects of corpus differences like recording conditions, number
of speakers per reference set, and speech diversity. Word-level
results also reflect basic aligner accuracy, independent of how
suitable phones or characters would be as sub-word units of
pronunciation analysis. Gold alignments for NB Tale (Gold-
N), replicating [16], show the best performance overall. Perfor-
mance is almost as good with CTC-N, but considerably worse
with MFA-N. For CAPTinI, MFA-C performs slightly better
than CTC-C.

A similar pattern of results holds for sub-word segments,
with an even smaller performance gap between CTC and the
best aligner per language. High performance for Gold-N is un-

6https://github.com/catiR/orthography-capt
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Figure 2: EER by Transformer layer (1-24 or 1-48) for each
alignment type. Bars show standard error across 10 runs.

Table 1: Detailed results for segments, selecting the highest per-
forming layers from each corpus and alignment type. Data is
specified by alignment type, NB Tale or CAPTinI corpus, and
selected Transformer layer in parentheses. Results shown are:
area under ROC curve, equal error rate, area under precision-
recall curve, L2 recall when L1 precision is 0.8, and best F1
score.

Data ROC EER PR R@P F1

Gold-N (40) 0.89 19.2% 0.81 0.67 0.74
CTC-N (40) 0.88 19.5% 0.80 0.64 0.73
CTC-C (7) 0.83 24.3% 0.69 0.25 0.67
MFA-N (16) 0.82 25.8% 0.69 0.35 0.64
MFA-C (7) 0.84 23.5% 0.71 0.30 0.68

surprising given the lack of alignment error, clean recording
conditions, and large number of reference set speakers. CTC-N
also performs well. However, as both aligners for CAPTinI ex-
ceed MFA-N performance despite these corpus characteristics,
MFA alignments were probably quite inaccurate for NB Tale.

Overall, the pattern of results indicates that letter-based seg-
ments can be at least as good a unit as phones for non-nativelike
pronunciation classification, while the similarity between Gold-
N and CTC-N performance in particular is a promising indi-
cation for meaningful pronunciation scoring by letter-aligned
acoustic segments as well as traditional phones. Figure 3 indi-
cates an especially strong impact on the potential user experi-
ence from choosing different Transformer layers.

Finally, all experiments regardless of corpus and alignment
type showed better performance than reported baselines of [16].
Overall, MFA-N as well as both MFA-C and CTC-C have per-
formance roughly similar to an experiment of [16] with gold
alignments but only 10 reference speakers per set. While the
10-speaker scenario roughly matches the Icelandic data, MFA-
N experiments use the entire NB Tale corpus, which reinforces
the impression that inaccurate alignments negatively affected
MFA-N performance.

In our experience using MFA in a variety of lower-resource
language settings, this tool can have fairly high variance in qual-
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Figure 3: L2 speaker identification recall, when precision for L1
speaker classification is constrained to 0.80. Bars show stan-
dard error across 10 runs.

ity, with substantial fluctuations from training acoustic models
on different subsets of data or varying aspects of pronunciation
dictionaries/phone sets. Since only one MFA training setup was
used in this experiment, there is a fair chance that MFA-N per-
formance could be improved with further efforts.

4. Discussion and conclusions
Experiments established clearly that L2 mispronunciation can
be assessed in letter-aligned speech segments as well as phone-
aligned segments. We conclude that the proposed architecture,
combining label-independent relative DTW pronunciation scor-
ing with E2E ASR to directly associate each letter with a score,
advances towards a practical solution to give learners of many
languages detailed pronunciation feedback in a format they can
seamlessly comprehend.

Moving towards real-life practical application of this ap-
proach, the next key step is to investigate whether CTC letter
alignments are indeed accurate enough to tell the learner what
exactly they have mispronounced, not just that they have mis-
pronounced something. Corpora with gold phone annotations
like NB Tale can start to answer this, through comparing phone
and letter alignments where it is clear what phone(s) the let-
ter(s) should correspond to. Annotated error corpora, if avail-
able, can provide valuable information on how often particular
errors are ascribed to the correct letters, in cases like the vowel
quality change or consonant insertion errors described for fljúga
in §1.1.2. Ultimately, success of the approach might vary ac-
cording to orthographic and phonotactic properties of a given
target language; it may be more promising for languages with
relatively shallow orthographies, like Icelandic.

The general potential of E2E ASR character alignments as
an alternative to phone alignments is rarely considered, but in
the setting of fine-grained CAPT feedback all other solutions
have their own substantial drawbacks, motivating our attempt
to repurpose Wav2vec2. Evaluations showed this to be effec-
tive for the purpose, potentially deriving advantages from multi-
lingual pretraining unavailable to many traditional phone-based
approaches. The promising results can encourage similar efforts
for other cases in need of innovative solutions.
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